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CHAPTER 1

Static optimization

In this chapter we deal with problems involving the choice of values for a
finite number of variables in order to maximize some objective. Sometimes
the values the variables may take are unrestricted; at other times they are
restricted by equality constraints and also by inequality constraints. In the
course of the presentation an important class of functions will emerge;
they are called concave functions and are closely associated with “nice”
maximum problems. They will be encountered throughout this book. For
this reason we weave the concept of concavity of functions through the
exposition of maximization problems. This is done to suit our purposes,
but concave functions have other important properties in their own right.

The notation we use is fairly standard. If in doubt, the reader should
refer to the appendix to this chapter, which also contains a reminder of
the basic notions of multivariate calculus and some matrix algebra needed
to follow the exposition.

1.1 Unconstrained optimization, concave and convex functions

In what follows we assume all functions to have continuous second-order
derivatives, unless otherwise stated. Strictly speaking, all domains of defi-
nitions should be open subsets of the multidimensional real space so that
no boundary problems arise.

1.1.1 Unconstrained maximization

Consider the problem of finding a set of values x, x,, ..., X, to maximize
the function f(xy,...,x,). We often write this as

Maximize f(x), (LY
X
where x is understood to be an n-dimensional vector. We refer to the

problem of (1.1) as an unconstrained maximum because no restrictions
are placed on x.

Necessary conditions. Suppose we find a solution to this problem and
denote the optimal vector by x*. Consider an arbitrarily small deviation

1



2 1 Static optimization

from x*, say dx. If we have a maximum at x*, then f must not increase
for any dx.
The change in f is approximated by

df = 3 f,(x*) dx;.

Clearly, df <0 if we have a maximum at x*. Furthermore, suppose we
found some dx vector such that df < 0; then by using the deviation (—dx)
we would obtain an increase in f. Therefore, it must be that for any dx
vector, df is equal to zero. The only way this can be achieved for arbi-
trary deviations is to require each derivative fxi(x*) to vanish. Formally,

J(x) reaches a maximum at x* implies f, (x*) =0, i=1,...,n. (1.2)

This is called the first-order condition. Several remarks must now be made.
First, the above reasoning, hence (1.2), aiso applies to minimization prob-
lems. Second, we have been lax in defining a maximum. We should have
distinguished a global maximum from a local maximum. We say that
f(x) reaches a global maximum at x* if f(x*) = f(x) for all x on its do-
main of definition (assumed to be an open set). We say f(x) reaches a
local maximum at x* if f(x*) = f(x) for all x “close” to x* (i.e., for all x
within § units of distance from x*, where 6 is some positive number). The
local maximum is a much weaker concept than the global one. However,
because our argument relies on arbitrarily small deviations from x*, it
applies to both cases. The first-order condition (1.2) follows from the
existence of a maximum; hence, it is a necessary condition for a maxi-
mum, but it is not the only one, as we now show. As we noted previously,
condition (1.2) is necessary for a local minimum as well. The following
condition, called the second-order necessary condition, takes a different
form for a maximum than for a minimum.

To establish it we must take a Taylor’s expansion (with remainder) of
the function f about the point x*:

FHdR) = f()+ 3 f(x7)(dx)

i=1

1 n n
+3 2 2 Lon(@)@x) 4 +R, (13)
i=1j=1
or in vector notation (see the Appendix for details),
SOC+dX) = fX)+ (%) fu(K)+ $(dX) - fue (X - (@dX) + - + R,
(1.3b)

where dx is small enough (i.e., |dx| < 8) that higher-order terms vanish
relative to second-order terms.



1.1 Unconstrained optimization 3

Suppose again that we have a (at least local) maximum, that is, f(x*) =
Sf(x*+dx), vdx, |dx| <é. Then f,(x*)=0, and neglecting terms higher
than the second order we have

SxX*+dx)— f(x*) = 1(dX) ' fix (x*)-dX
=0, because x*is a maximum.

Since (dx)’- f o (x*)-(dX) is negative or zero for all small deviation vectors
dx, the Hessian matrix of f evaluated at x* must be negative-semidefinite.
This is the second-order necessary condition:

f(x) reaches a maximum at x* implies f,.(x*) is negative-semidefinite.
1.4)

Again, (1.4) applies to global as well as local maxima.

Sufficient conditions (for a local maximum). 1t is unfortunately not pos-
sible to state conditions that are both necessary and sufficient for a func-
tion to reach a maximum. We can, however, easily provide sufficient con-
ditions:

If £, (x*)=0,i=1,..., n,and f,,(x*) is negative-definite,
then f(x) reaches a local maximum at x*. (1.5)

To prove this we shall consider again Taylor’s expansion in (1.3) and let
dx — 0, so that the second-degree term dominates those of higher order
while the first-degree term vanishes; we obtain f(x*+ dx) < f(x*), thus
establishing x* as a local maximum.

1.1.2  Global results and concave functions

When we seek a maximum in an economic problem, it is most often a
global one. Indeed, it is little comfort to know that we are doing the best
we can but only if considering policies which differ minutely from the
current one (local optimum). It is also clear that we will not be able to
characterize a global maximum with conditions on the values of the func-
tion and its derivatives at the maximum itself; we will need to place re-
strictions on the overall shape of the function, restrictions that apply
everywhere on the domain of definition, which we denote by X.
Consider the exact form of Taylor’s expansion to the second degree:
there exists a point x, on the line segment between x and X such that

SX) = fR) +(x—%)" £,(R) + 3 (x~%) - H(X,)- (x—%), (1.6)

where H(x,) denotes the Hessian matrix of f, evaluated at the point x,. If
we were to restrict our attention to functions with a negative-semidefinite
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matrix everywhere on its domain of definition, then the last term of (1.6)
would be guaranteed to be nonpositive for any x, and the requirement that
X be a global maximum (i.e., f(x) — f(X) = 0 ¥x € X)) would be equivalent
to the first-order condition f,(X) = 0. We now formalize this argument.

Definition 1.1.1. A function with continuous second-order derivatives
defined on a convex set X is concave if and only if its Hessian matrix is
negative-semidefinite everywhere on its domain of definition X.

Theorem 1.1.1. Let f(x) be a concave function; then it reaches a global
maximum at X if and only if f,(X)=0.

Definition 1.1.1 applies only to functions with continuous second-order
derivatives. It is useful to have a more general definition of concavity
that does not require this assumption.

Definition 1.1.2. A function f(x) with continuous first-order derivatives
defined on a convex set X is concave if and only if

S(X2) = f(x)) < (Xp—Xy)"- fx(X)),

for all x4, x, on X.

Note that Definition 1.1.2 is less stringent than Definition 1.1.1 in terms
of differentiability restrictions, since it requires continuity only for the
first derivatives; this is the only difference between the two definitions.
Indeed, if we assume that the function has continuous second-order de-
rivatives, we can see that the two definitions are equivalent simply by
writing down the exact form of Taylor’s expansion. Given two arbitrary
points x; and X,, there exists a point x, between them such that

J(X53) = f(x)) + (X, — X)) fu(X )+ $(x—x) - H(x,) - (x5—X,),
J(X2) = f(x1) = (X3—X;) - filXp) = L(x,— %) - H(X,) - (X,—X;) < 0.

The geometric interpretation is simply that a tangent plane to the graph
of f(x) must remain everywhere above the graph, the equation for the
tangent plane at x; being

Y=f(x)+(x—=x7)- fi(x)).

This is illustrated in Figure 1.1a for functions of one variable. Defini-
tion 1.1.2 does not cover functions that have “kinks” and as such are not
differentiable everywhere. To admit this case, a more general definition
is needed.
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Definition 1.1.3. A function f(x) defined on a convex set X is concave if
and only if

JX)=tf(x)+(1-1) f(x5), 0=t <1, all x;,X,in X,

where x, = 1x;+(1—1)x,.

If a function satisfies Definition 1.1.2, it also satisfies Definition 1.1.3. To
see this we state Definition 1.1.2 in two instances:
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J(x2) = f(x) = (x2— X)) fu(X)

and
SX) = f(x) = (x1=x,) - fi(X),
where
X, =x;+(1—-1)x, forsome ¢, 0<r=<l.
Since
X2—X,=1(x;—x;) and x;—x,=—(1-1)(x,—X),
we have

S(x2) —f(x)) = t(xy—x1)"- ful(Xy),
S&)—f(x) = — (1= 1) (X3 —xp) - fu(X,).

Multiplying the first inequality by (1—¢), the second by ¢, and adding
yields (with 0<r<1)

tf(x)+(1—1)f(x3)— f(x) =<0,

which was to be proved.

Note that no differentiability properties are required in Definition 1.1.3.
The geometric interpretation of this definition is that a line (or chord)
joining two points of the graph always lies below the graph, since the
left-hand side of the inequality represents the value of f at a convex com-
bination of x; and x, and the right-hand side is the same convex combina-
tion of the values of the function at x; and x, - hence the height of the
point on the chord above x,. This is illustrated in Figure 1.1b for functions
of one variable.

Concave functions have many notable properties; Theorem 1.1.2 lists
some of the most useful ones.

Theorem 1.1.2

(i) Let f(x) be a concave function and k = 0 a constant; then kf(x)
is a concave function.
(ii) Let f(x) and g(x) be concave functions; then f(x)+ g(x) is itself
a concave function.
(iii) Let f(x) be a concave function; then the upper contour set de-
fined by B(X)={x e R, | f(X) = f(X)} is a convex set.

(The converse of (iii) is not true!)
The proofs of these results are straightforward; for instance, (iii) re-

quires that we show that if f(x;) = f(X) and f(x,) = f(X), it follows that
J(x;) = f(X); this is obvious from Definition 1.1.3.
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Strictly concave functions: unique global maximum. While concave func-
tions have the property that a solution of the first-order condition yields
a global maximum, this does not ensure the uniqueness of that solution:
a concave function may reach its global maximum at several points. For
example, the following function is concave, but the first-order condition
admits as a solution any point between 1 and 2; thus, the function reaches
a global maximum at any x* such that 1 < x*<2,

x—0.5x2, x<1,
S(x)=10.5, l<=x=<2,
(x-1)—0.5(x—-1)2, 2<x.

Other examples will be encountered in Section 1.1.5.

It is sometimes desirable to place more restrictions on the function so
that if a maximum exists, it is the unique global maximum. We use this as
a means of introducing a subclass of concave functions called strictly
concave functions. Definitions 1.1.2 and 1.1.3 are adapted by simply re-
quiring strict inequalities.

Definition 1.1.3'. A function f(x) defined on a convex set X is strictly
concave if and only if

Jx)>tf(x)+1-1)f(x;), 0<t<],
for all x;, x, in X, where x; = x, and X, = x;+ (1 —£)x,.

Definition 1.1.2’. A function f(x) with continuous first-order derivatives
defined on a convex set X is strictly concave if and only if

S(X2) = f(x)) < (Xp—X)~ fx(X))

for all x; and x, in X, where x;#x,.

It is obvious from Definition 1.1.2’ that f,(x) = 0 is necessary and suf-
ficient for x; to be the unique global maximum of that function f.

We cannot claim that functions with continuous second-order derivatives
are strictly concave if and only if their Hessian matrix is negative-definite,
because some strictly concave functions have a Hessian matrix which be-
comes negative-semidefinite at some points. One instance is f(xy, x,) =
—(x1)*= (x,)?, which is negative-definite everywhere but at x, = 0, when it
is negative-semidefinite. We must be content with the following theorem.

Theorem 1.1.3. A function that is defined on a convex set X and has a
negative-definite Hessian matrix everywhere on X is strictly concave.

The reader is invited to prove this result using Definition 1.1.2".
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1.1.3 Unconstrained minimization and convex functions

Results for minimization problems are just mirror images of those for
maximization problems and are obtained by replacing f(x) by —f(x).
Thus, the first-order necessary condition for a local minimum at x* is

fix*)=0, i=1,...,n, 1.7
and the second-order necessary condition is

S (X*) is positive-semidefinite. (1.8)
The sufficient conditions for a local minimum at x* are

SH(x*)=0 and f,(x*) is positive-definite. (1.9)

Similarly, we have to define convex functions in order to obtain global
results on minimization. Corresponding to Definitions 1.1.1, 1.1.2, and
1.1.3 we now have the following (results on strictly convex functions are
indicated in parentheses).

Definition 1.1.4. A function with continuous second-order derivatives
defined on a convex set is (strictly) convex if and only if its Hessian matrix
is positive-semidefinite (if its Hessian matrix is positive-definite).

Definition 1.1.5. A function f(x) with continuous first-order derivatives
defined on a convex set X is (strictly) convex if and only if

S(x2) = f(x) = (x5—x1) - fx(x;) forall x;,x;in X,
(f(Xx2)—f(x)) > (X,—x;)- fx(x;) forall x;,x,in X, where x;#x,).

Definition 1.1.6. A function f(x) defined on a convex set X is (strictly)
convex if and only if

S =tf(x)+(1-1)f(xp), 0=<r=<], allx;,x,in X,
(fx)<tf(xp+(1-1)f(x5), 0<r<], allx;,x,in X, X;#X,).
Theorem 1.1.4

(i) Let f(x) be a convex function and &k = 0 a constant; then k£ f(x) is
a convex function.

(i) Let f(x) and g(x) be convex functions; then f(x)+ g(x) is itself
a convex function.

(iii) Let f(x) be a convex function; then the lower contour set defined
by W(X)={xeR,| f(x) = f(X)} is a convex set. (The converse
of (iii) is not true!)

(iv) Let f(x) be a (strictly) convex function; then — f(x) is a (strictly)
concave function.
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f(x)

f(x,)
tf(x;) + (1 —0)f(x;)

f(x;)

f(x,)

f(x)
graph
f(x5) A m——
(X3 — xf'(xy)
L 1
{ { tangent
X, Xy
(b)
Figure 1.2

(v) A linear function is both convex and concave but not strictly
either.

Definitions 1.1.5 and 1.1.6 are illustrated in Figure 1.2 for convex func-
tions of one variable.

1.1.4 Geometric representation

Figures 1.3a and 1.3b represent the graphs of a concave and a convex
function, respectively. It is important to realize that a concave function
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f(x;,x5) 4

7
{ SN Xy
N

D —

f(xl,x2)1

Figure 1.3

need not have a maximum, nor a convex function a minimum. If they
do, then one is somewhat dome-shaped and the other bowl-shaped. It is
then obvious that a rod connecting two points of the dome remains under
it (Definition 1.1.3), while such a rod connecting two points of the bowl
remains above its walls (Definition 1.1.6). It is clearly inconvenient to rely
on three-dimensional diagrams; instead, we most often use level curves.
We know that if a function is concave, its upper contour sets are convex
sets. We use this information in Figure 1.4a to draw some level curves of
a concave function, where the arrows indicate directions of increase of
the function and one convex upper contour set is hatched. We can also
verify that Definition 1.1.3 is satisfied: the function takes on the value ¢
at points 4 and B; thus, it takes on a higher value at a point between
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X24
f(xy,x5) >¢
A
zZ= :
i) < e )
1> X2 ¢ B X
1
(a)
X2 f(x;,x3)=¢
[
*2 f(xy,x3)=¢c
A
B
;xl
(©)
Figure 1.4

them, D, which is naturally within the convex upper contour set. A simi-
lar picture emerges for a convex function in Figure 1.4b, where a lower
contour set is hatched and the arrows indicate directions of increase of
the function. Finally note that a contour curve such as the one in Figure
1.4c cannot correspond to a concave (or a convex) function since it delin-
eates no convex set on either side of it.

A word of warning is in order. Because concave functions have convex
upper contour sets but some other functions do too, we cannot rely on



12 1 Static optimization

this contour curve representation to characterize concave functions ex-
actly. For many purposes, however, it will be adequate.

1.1.5  Numerical examples and some useful functional forms

It is useful to develop some “feel” for the concavity properties of func-
tions so as to avoid always running back to the definitions. The knowledge
of a few simple functions along with the composition rules already out-
lined and some more to follow is very helpful. We first list a few functions
and the conditions for their concavity and/or convexity. The reader is in-
vited to check these as exercises, using mainly Definitions 1.1.1 and 1.1.4.

n
f(x) =TT (x;)% is concave for x=0
i=1

n
ifand only if @; 20, ¥i,and ¥ «a; <1. (1.10)
i=1
Jx)=(ap+a;x,+ - +a,x,)", defined when
ag+a x+--- +a,x,>0is concave if and only if
O0=a=<l;itis convexif and onlyif a=1or o <0. (1.11)

f(x)=x"-A-x is concave if and only if A is negative-
semidefinite; it is convex if and only if A is positive-
semidefinite. (1.12)

n

f(X)= 3 «;In(x;+a;) is concave whenever it is defined
i=1

(i.e., x;+a; >0, all i) if and only if o; = 0, Vi; it is
similarly convex if and only if «; <0, Vi. (1.13)

Theorem 1.1.5. An increasing concave function of concave functions is
concave.

Proof. Let
W, ..., x") = VU, ..., UNxY),
where x/ denotes a vector of arbitrary dimension, V is increasing and

concave in all U’ jointly, and U’ is concave in x/, vi. We use the standard
notation for convex combinations: z,=7z;+(1—-1)z,, 0t =<1,

WL, ...,xD) = VUYxD,..., UMxD)

VU xY+(U - UL, ..., t U + (1= U(xE)),
because all U’ are concave and V is increasing,

= V(Ux)), ..., U'x) + (1 - ) U Y(xD), ..., U(x5)),
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by the concavity of ¥,
=tW(x}],...,xD+(1=W(x},...,x5). O

Theorem 1.1.6. Let f(x) be a function of » variables and let z= —x and
h(z) = f(x); then if f(x) is concave (convex), so is 4(z).

The proof is obvious using, for instance, Definition 1.1.3. As an example,
J(x)=1—e"*is concave in x; hence, h(z) =1—e?is concave in z, where
I=—X.

We now consider a few numerical examples that may or may not pos-
sess a global maximum.

Example 1.1.1. Let f(x)=x"-A-x+a’-x, where

-1 0.5 -1
A_[O.S —IJ and a—[ 5].

It is concave since A is negative-definite and the linear term does not af-
fect concavity. To find a maximum, set the first-order derivatives to zero
and solve: fi=-2x+x,—1=0 and fy=x—2x,+5=0 yield x;=1,
X, =13, the point at which f reaches its global maximum.

As we mentioned earlier, a function may reach its global maximum at
many points; that is, the solution may not be unique. This is illustrated in
the following example of a concave but not strictly concave function.

Example 1.1.2. Let f(x) = (x;)%3(x,)%" —0.3x, — 0.7x,. We know that
this function is defined and concave for all x positive (e.g., use (1.10)):

S1=0.3(x)"%(x,)*7-0.3=0,
S2=0.7(x)%3(x,)"%3-0.7=0.

These first-order conditions have many solutions; namely, any x satis-
fying x| = x, is a solution. The global maximum value of f is zero and the
upper part of its graph is shaped like the inside of a tunnel.

Example 1.1.3: saddle point. In this example we emphasize the idea that
a function may be concave in all its variables but not necessarily concave
in those variables jointly. We also introduce the concept of a saddle point.
The example involves the function f(x|, x;) = —(x;)?+ax,x,— (x,)? for
various values of a.

Case (a). Let f(x,x;)=—(x;)®—(x;)% then

-2 0
w2}



14 1 Static optimization

)
7

(@) (b)

f@

Figure 1.5

the function is concave, and (0, 0) is the global maximum. This is illus-
trated in Figure 1.5a. We proceed to “stretch” this function by introduc-
ing ever-increasing mixed terms.

Case (b). Let f(x},x5)=—(x1)>+x,;x,—(x,)% then

—2 1
m=[7 L)
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the function is still concave, and (0, 0) is still a global maximum. The
stretching is shown in Figure 1.5b.
Case (c). Let f(xy,x;) =—(x1)?+2x;x,—(xX,)?; then

H= [—2 2 ],
2 =2
the function is still concave, but the first-order conditions only imply x, =
X,; thus, there are many points at which the function reaches a global
maximum. We again have a tunnel shape: the stretching has been carried
out to an extent that we have a tubular shape with a horizontal top line.
Note also that [H|=0. Further stretching will destroy concavity, as we

now see.
Case (d). Let f(xy,x;)=—(x1)>+3x;x,—(x,)% then

-2 3
n=]7 )

the function is no longer concave in (xi, x,) because |H|= -5, although
it is still concave in x| and x, individually. The solution of the first-order
conditions still is (0, 0), but we can no longer claim that it is a maximum.
It is not a minimum either, but what we call a saddle point. The level
curves are drawn in Figure 1.5d; the two straight lines corresponding to
Jf=0 delineate four regions, and when we move from region I to III the
origin appears to be a minimum, but when we cross the origin while mov-
ing from region II to IV it appears as a maximum. This is the essential
property of a saddle point configuration: it appears as a maximum in
some directions and as a minimum in others. These directions need not
be the axes as Figure 1.5d shows. Thus if we cross the origin following any
one axis, it appears as a maximum with respect to that variable, which
is as it should be since f is concave in x| and concave in x,, separately.
We have drawn a three-dimensional representation of the graph in Fig-
ure 1.5e. The additional mixed term has lifted the ends of the tunnel; it
does look something like a saddle. A mountain pass is another, less com-
mon description.

1.1.6  Some economic applications

We are now able to tackle any economic problem in which the objective
is to maximize some objective and where the entities to be chosen are
many while their choice is unrestricted. One such problem is profit maxi-
mization by a competitive firm, to which we now turn.

Let f(xy,...,x,) be the output obtainable from input levels x;, ..., x,,.
If output price is p, the price of input / is w;, and some fixed cost is k, the
maximization of profit reduces to choosing (x, ..., x,) to maximize
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n
Pf (X1, X))~ X wix;—k.
i=1
If we assume that f is concave, the global maximum will be the solu-
tion of the »n equations

pf;'_wi=0’ i=1,...,n.

The first term is the rate of increase in output per unit of input / at the
margin (called the marginal physical product of input /) multiplied by the
output price; this is called the marginal value product of input i (MVP;
for short). The above condition equates it to the price of input i; thus,
the price of the input is equal to the contribution to revenue made by the
marginal unit. This seems sensible, yet fails to relate maximization of
profit to the concavity of the profit expression. We now seek to clarify
this relationship. In general, economic sense dictates that if MVP; > w;,
we would gain by increasing the input level; conversely, MVP; < w; would
lead us to decrease input. Suppose now that f is concave and indeed that
Jfii <0 for all i; then the derivative of f with respect to x; decreases when
x; increases; hence, if x; were to rise above the level x* indicated by the
first-order condition, w; would exceed MVP; and we would bring x; back
down. Similar reasoning shows that if x; strays below that level, we should
bring it back up. If, in contrast, f;; were positive at x*, that point could
not be a maximum, for an increase in x; from x* would increase MVP;
above w; and induce further increases in x;. Indeed, with a strictly convex
production function we could reach an arbitrarily large profit; in other
words, the problem would have no solution. This possibility should al-
ways be kept in mind for any problem in analytical economics, since we
work with unspecified functional forms and a precise solution is never
derived. As a way of illustrating this point we consider profit maximiza-
tion when the production function is homogeneous.

Homogeneous production functions and returns to scale. Suppose q=
f(x) is a production function that is homogeneous of degree 4 (see the
Appendix for definitions). From a starting point of x units of input, sup-
pose that we scale the operations up by a factor of ¢ >1, that is, employ
¢x units of input; we will obtain an output f(¢x) = (¢#)"f(x), and hence
we will have scaled up output by a factor (¢)”. Depending on the value of
h, this factor (¢)* will be larger or smaller than ¢ and output will increase
more or less than the input vector. More precisely,

h<1 - (t)"<t: f(x) exhibits decreasing returns to scale.
h=1 - (t)"=1¢: f(x) exhibits constant returns to scale.

h>1- (t)">t: f(x) exhibits increasing returns to scale.
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Theorem 1.1.7. Let f(x) be homogeneous of degree A, positively valued,
and concave; then 0<h<1.

Proof. Since f; is homogeneous of degree (h—1), Euler’s theorem yields
; x; fij=(h=1)f;.

Multiplying by x;, summing, and applying Euler’s theorem again yields
%} Ei:x,»xjf,-j= (h—1) %:xjfj: (h—1)hf.

The left-hand side is the quadratic form x’Hx, where H is the Hessian
matrix of f. Concavity of f ensures that it is nonpositive; hence, f >0
implies A(h—1)<0. O

Note that our argument does not establish that if f is homogeneous of
degree A and positively valued, then it is concave if and only if # < 1. This
is because on the left-hand side of the preceding equation the values x;
and x; are from the same vector at which f}; is evaluated, a weaker re-
quirement than Definition 1.1.1 of concavity. As a counterexample con-
sider the function f(x;,x,)=(x2+x3)V4, x;>0, x,>0. It is positively
valued and homogeneous of degree % but not concave since its upper con-
tour sets are clearly not convex sets.

We are now ready to examine the implications of alternative assump-
tions regarding the degree of homogeneity of the production function on
the profit of the firm. In what follows we assume that all x are positively
valued and f(x)> 0, unless otherwise indicated.

If the profit expression = = pf(x) —w’-x has an unconstrained maxi-
mum, it will satisfy the necessary conditions

ofixy=w;, i=1,...,n. (1.14)

If x* solves equation (1.14), multiplying by x}, summing, and applying
Euler’s theorem yields

p Y XHi(x) = Zwxt,
14 i
Apf(x*) =w'-x*.
Substituting in the profit expression, we get

7= (1-h)pf(x*).

Therefore, at x*, profit will be positive, zero, or negative, depending on
whether there exist decreasing, constant, or increasing returns to scale,
respectively. In the case of increasing returns, first note that the objective
function cannot be concave (if it were, / could not exceed 1, by Theorem
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1.1.7) and Theorem 1.1.1 fails us. Furthermore, as in the proof of Theorem
1.1.7, we can show that

x* - Hx*)-x*=(h—1hf(x*)>0, since h>1.

This demonstrates that H(x*) is not negative-semidefinite and violates
the second-order necessary condition for a maximum. Let us remark that
increasing returns to scale are often associated with unbounded profit
and as such are not consistent with the hypothesis of a price-taking firm.
The case of decreasing returns poses no special problems, since we can
assume that f is concave, but the case of constant returns to scale is more
difficult to handle, although the profit expression is concave under the
additional assumption of concavity for f. The problem is with the first-
order conditions (1.14):

pfix)y=w;, i=1,...,n.

Recall that under constant returns, f; is homogeneous of degree 0; there-
fore, if a vector x satisfies these conditions, so will any vector ¢-x, ¢ =0.
The profit made with any of these vectors remains zero. The scale of oper-
ations is thus indeterminate and profit nil. This defect becomes a virtue
when in some general equilibrium models such as those of international
trade the focus is on the performance of each industry and the number
and size of firms in each industry are not a matter of concern. There is,
however, a further difficulty with the constant returns to scale assump-
tion for an individual competitive firm. The problem is that for an arbi-
trary set of prices, equation (1.14) usually does not admit a solution, as
we now demonstrate. Let f(x) and w be fixed throughout, and suppose
that at some price p* (1.14) admits a vector x* as a solution; then 7(x*)=0
and ¢x* is also a solution, ¢ =0; this is a global maximum, since we as-
sumed 7 to be concave. Now consider another output price, say p; the
profit expression can be written as

m=pf(X)—w-Xx
=(p—pPf(X)+[p*f(x)—w-x]. (1.15)

We know that the second term in (1.15) has a global maximum of zero at
x* (and at rx*), but if p > p* we can make the first term infinitely large by
increasing ¢; hence, there is no maximum, and the first-order necessary
conditions (1.14) do not hold anywhere (if they did, a global maximum
would exist by concavity of 7). Note that an arbitrary x value may well
make profit negative even in this case. Conversely, suppose that p < p*;
then the second term has a global maximum of zero at rx*, but the first
term can be only negative or zero. Hence, the maximum is found at the
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lower bound x =0 (i.¢., = 0), but this is not an unconstrained maximum
and again the necessary first-order conditions (1.14) fail to have a solu-
tion. Note that when p < p*, any vector x >0 yields a negative profit.

In order to get a more intuitive grasp of these results, consider a firm
with two inputs. The equations (1.14) are pfi(x;, x;) = wyand pfo(x,, x,) =
w,. However, if f is homogeneous of degree 1, then f; and f, are homo-
geneous of degree 0. Consequently, these derivatives are simply functions
of a single argument x, /x; (the only one that matters, since scale is irrele-
vant), and both determine a value for it; unless the prices are in a particu-
lar configuration, these values will differ and no solution exists. The exact
relationship is that output price p be equal to the unit cost function ¢(1, w);
see the definition of cost functions in Section 1.2.3. Let us now briefly
illustrate these results with a numerical example.

Example 1.1.4
SO x0) =200) (%)%, wi=1, wy=2.
Equations (1.14) are

px) V2(x)2=1 and p(x)%(x,)" =2,

or

x1/x2=p2 and Xl/xz=4/172-

Therefore, (1.14) is satisfied if and only if p= p*=+v2; then the optimal
input mix is x; = 25, the scale is arbitrary, and profit is zero, a global max-
imum. If, however, p<p*, say p=1, then 7= 2(x;)"2(x,)"/?2—x;-2x,
and letting (x,/x;)?>=u, w=x,[—u?+2u—2]. The bracketed expres-
sion is always negative and so is profit. Finally, if p > p*, say p=2, then
7 =x,[—u?+4u—2]. This bracketed expression reaches a positive max-
imum of 2 when u =2, that is, x; = 4x,, and by letting x, be large we can
generate arbitrarily large profits. Finally, note that an arbitrary choice of u
may generate a negative profit, for example, u =4, even with p*< p=2.

To gain some geometric insight into the matter, try to visualize the
graph of a linearly homogeneous function of two variables. Because of
the property f(¢xy, tx,) = tf(x;, x,) we see that the graph is “ruled from
the origin”; a half-line from the origin to any point of the graph lies
on the graph in its entirety. Visualize now the graph of input costs C=
WX+ W, X,; it is a plane going through the origin. Let us now draw the
graph of pf(x,, x,) for low p values; it lies entirely below the cost plane:
profit is everywhere negative. As p rises, the graph comes into contact
with the plane, but it does so along an entire half-line from the origin. At



